Effect of climatic selection on genetic diversity

¹Attila Borovics - ²Csaba Mátyás

¹Forest Research Institute, Sárvár, Hungary ²University of West-Hungary, Sopron, Hungary

Draft

- Forests at the xeric limit: present situation in Hungary
- Material and methods: collecting genetic and climate data
- Searching correlation of climate parameters with genotypes, allele frequencies and calculated genetic parameters
- Possible conclusions with regard to forest reproductive material use, gene conservation management

Forests at the xeric limit

- Declining precipitation and above the average warming up is forecasted for South-eastern Europe.
- A speciality of this area is that most dominant tree species reach here the xeric limit of their distribution.
- Consequently the majority of the native species are directly threatened by progressive warming and increasing drought frequency.

Distribution map of Quercus petraea

Source: http://www.bioversityinternational.org/Networks/Euforgen/

Sampled 15 Quercus petraea populations

Collecting genetic information

- Sample size: 50 individuals per population
- Quantification of genetic diversity at 11 polymorphic allozyme loci
 - codominant and adequately characterize the genetic diversity within population
- Starch gel electrophoresis provides a powerful and cost-efficient assay of genetic variation

Missing genetic differentiation on geographic basis

Collecting climate parameters

- Temperature and precipitation digital surfaces were compiled by Rasztovics & Móricz using kriging method from meterological datasets.
 - The initial dataset included 31 temperature stations for the 1951-2000 period and precipitation data from 594 stations were used for the 1974-2005 period.
- Producing average monthly temperature and precipitation values using interpolation
- Estimating climate parameters from average monthly temperature and precipitation datasets (method of Mátyás & Nagy)

Average temperature and precipitation

Pop ID	Januar	Februar	March	April	May	June	July	Agust	September	October	November	December
						Tempe	rature					
1	-1,62	0,02	3,55	8,33	13,05	16,26	18,20	17,85	13,90	8,88	3,34	-0,18
2	-0,76	1,31	5,49	10,52	15,36	18,53	20,38	19,97	15,80	10,48	4,81	0,94
3	-1,60	0,27	4,15	9,18	13,86	17,14	19,03	18,62	14,67	9,41	3,87	0,00
4	-0,96	1,30	5,32	10,20	15,06	18,22	19,93	19,59	15,64	10,58	4,91	0,49
5	-1,31	0,65	4,51	9,54	14,37	17,69	19,50	19,21	15,35	10,25	4,39	0,27
6	-1,28	0,70	4,64	9,76	14,66	17,98	19,74	19,40	15,47	10,31	4,48	0,34
7	-1,00	1,21	5,24	10,33	15,32	18,53	20,19	19,76	15,75	10,51	4,84	0,50
8	-2,23	-0,31	3,28	8,20	13,31	16,33	18,07	17,71	13,42	8,46	2,72	-1,12
9	-3,16	-1,71	2,28	7,77	12,85	15,99	17,68	17,41	13,31	8,26	2,61	-1,42
10	-3,17	-1,80	2,23	7,76	12,85	16,00	17,70	17,45	13,37	8,32	2,65	-1,37
11	-2,84	-0,91	3,64	9,39	14,47	17,68	19,38	18,94	14,69	9,29	3,51	-0,87
12	-2,84	-0,63	4,05	9,86	14,90	18,10	19,77	19,23	14,93	9,42	3,65	-0,89
13	-3,25	-1,32	3,04	8,86	13,87	17,12	18,78	18,16	13,98	8,59	2,95	-1,37
14	-3,53	-1,70	2,46	8,22	13,21	16,46	18,13	17,54	13,42	8,13	2,55	-1,69
15	-3,30	-1,33	3,03	8,88	13,91	17,16	18,79	18,17	14,00	8,63	3,02	-1,34
			-			Precip	itation		-		-	-
1	36	33	36	51	75	91	82	75	67	56	68	56
2	30	28	30	41	61	74	66	62	57	46	56	46
3	33	32	33	49	73	90	83	76	68	56	66	55
4	41	37	41	53	64	82	65	64	64	56	70	61
5	45	39	45	57	71	90	71	69	67	58	75	64
6	43	38	43	55	68	87	69	67	65	55	71	62
7	41	36	41	52	65	82	66	64	62	53	69	60
8	47	35	47	51	72	80	68	60	56	50	71	60
9	37	31	37	48	70	76	75	61	49	45	63	53
10	40	35	41	53	76	82	83	67	55	50	68	57
11	34	31	34	48	67	75	76	61	48	44	60	50
12	29	28	29	48	64	78	74	63	45	41	54	45
13	37	34	37	56	73	88	87	69	59	49	59	52
14	38	35	38	59	78	94	92	75	62	53	62	55
15	35	32	35	54	70	83	83	67	58	48	55	49

Estimated climate parameters

Pop ID	T>30°C	T>25°C	Tyear	Tsdev	Tmax	Tmin	Tcont	Tveg	Twin	Tspr	Tsum	Taut	Tffree	Tpos	Tneg	T5+	T10+	T15+
1	7	41	8,5	7,3	18,2	-1,6	19,8	13,8	-0,6	8,3	17,4	8,7	10	103,40	-1,8	96,5	79,3	52,3
2	11	55	10,2	7,8	20,4	-0,8	21,1	15,9	0,5	10,5	19,6	10,4	11	123,60	-0,8	116,5	111,1	90,1
3	10	56	9,1	7,6	19,0	-1,6	20,6	14,6	-0,4	9,1	18,3	9,3	11	110,21	-1,6	101,9	83,3	54,8
4	11	62	10	7,7	19,9	-1,0	20,9	15,6	0,3	10,2	19,2	10,4	11	121,26	-1,0	114,6	109,2	88,5
5	15	61	9,5	7,7	19,5	-1,3	20,8	15,1	-0,1	9,5	18,8	10,0	11	115,73	-1,3	105,9	96,4	71,8
6	14	62	9,7	7,8	19,7	-1,3	21,0	15,3	-0,1	9,7	19,0	10,1	11	117,49	-1,3	107,3	97,6	72,6
7	14	64	10,1	7,8	20,2	-1,0	21,2	15,8	0,2	10,3	19,5	10,4	11	122,17	-1,0	115,6	110,4	89,6
8	10	37	8,2	7,6	18,1	-2,2	20,3	13,6	-1,2	8,3	17,4	8,2	9	101,51	-3,7	95,5	78,9	52,1
9	12	59	7,7	7,8	17,7	-3,2	20,8	13,3	-2,1	7,6	17,0	8,1	9	98,15	-6,3	93,3	77,2	51,1
10	0	17	7,7	7,8	17,7	-3,2	20,9	13,3	-2,1	7,6	17,0	8,1	9	98,32	-6,3	93,4	77,4	51,2
11	14	56	8,9	8,2	19,4	-2,8	22,2	14,8	-1,5	9,2	18,7	9,2	9	110,98	-4,6	103,8	85,2	56,0
12	12	48	9,1	8,3	19,8	-2,8	22,6	15,2	-1,5	9,6	19,0	9,3	9	113,91	-4,4	106,2	86,9	57,1
13	14	51	8,3	8,1	18,8	-3,3	22,0	14,2	-2,0	8,6	18,0	8,5	9	105,34	-5,9	99,4	81,9	54,1
14	5	22	7,8	8,0	18,1	-3,5	21,7	13,6	-2,3	8,0	17,4	8,0	9	100,12	-6,9	99,4	78,8	52,1
15	0	26	8,3	8,1	18,8	-3,3	22,1	14,2	-2,0	8,6	18,0	8,5	9	105,59	-6,0	99,5	82,0	54,1

Pop ID	Pyear	Pstdev	Pmax	Pmin	Pveg	Pacc	Pwin	Pspr	Psum	Paut	Ppos	Pneg	P5+	P10+	P15+	Dr2
1	726,1	19,1	90,9	33,1	497,6	228,6	124,8	162,0	247,9	191,4	634,4	91,7	497,6	390,5	247,9	30,3
2	597,1	15,3	73,7	27,9	407,1	190,0	104,2	132,1	202,3	158,6	567,0	30,1	437,3	407,1	320,2	8,6
3	711,7	19,9	89,8	31,6	493,9	217,8	119,3	154,3	248,4	189,8	679,1	32,7	493,9	388,5	248,4	28
4	697,4	13,3	81,8	37,1	447,6	249,8	138,5	157,7	211,5	189,7	656,6	40,9	488,5	447,6	338,9	12,8
5	750,2	14,6	90,2	39,3	482,8	267,4	148,2	172,1	230,5	199,4	705,6	44,6	482,8	425,9	297,2	20,4
6	721,5	14,2	86,6	37,6	465,2	256,3	142,4	165,4	222,5	191,2	678,9	42,6	465,2	410,4	287,0	17,1
7	689,9	13,4	81,7	36,0	442,9	247,0	137,2	157,4	211,2	184,1	649,1	40,8	483,7	442,9	337,6	11,9
8	696,4	13,0	80,2	35,3	437,0	259,4	142,0	169,8	208,1	176,5	554,4	142,0	437,0	335,8	208,1	17,3
9	645,0	15,4	76,0	30,9	425,0	220,0	120,2	154,8	212,6	157,5	524,9	120,2	425,0	331,6	212,6	19,8
10	706,9	16,5	83,2	34,5	466,2	240,6	132,1	169,3	232,4	173,1	574,8	132,1	466,2	363,4	232,4	26,3
11	626,7	15,7	76,2	30,5	419,4	207,4	114,1	148,6	212,2	151,9	512,7	114,1	419,4	327,6	212,2	14,7
12	597,8	17,1	77,7	27,6	412,5	185,3	101,9	141,1	214,4	140,5	495,9	101,9	412,5	324,3	214,4	14,4
13	697,6	18,3	87,9	33,6	479,5	218,1	122,3	164,9	243,9	166,5	575,4	122,3	479,6	375,1	243,9	27,3
14	742,5	19,9	94,5	35,0	513,3	229,2	128,6	175,7	261,3	176,9	613,9	128,6	479,6	401,4	261,3	35
15	668,6	17,5	83,5	32,0	462,8	205,8	115,8	158,1	233,8	160,8	552,8	115,9	462,8	361,4	233,8	23,8

Searching correlation between genetic and climate data sets

	Genotype frequencies at EST-A									Climate parameters														
Pop ID	(1, 1)	(2, 1)	(2, 2)	(3, 2)	(3, 3)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(6, 4)	T>30°C	; T>25°C	Tsdev	Tmax	Tmin	Tcont	Tveg	Twin	Tspr	Tsum
1	0	0	15	3	5	0	9	/ 1	16	1	0	/ 0'	/ 0	0	J 7	41	7,3	18,2	-1,6	19,8	13,8	-0,6	8,3	17,4
2	0	0	14	0	3	3	8	/ 4	18	0	0	/ 0'	/ 0	0	J 11	55	7,8	20,4	-0,8	21,1	15,9	0,5	10,5	19,6
3	3	2	11	2	. 12	0	2	. 3	15	0	0	/ 0'	/ 0	/ P	J 10	56	7,6	19	-1,6	20,6	14,6	-0,4	9,1	18,3
4	0	0	1	0	4	0	2	. 4	27	0	0	/ 5	/ 7'	0	J 11	62	7,7	19,9	-1	20,9	15,6	0,3	10,2	19,2
5	0	0	7	7	7	0	8	/ O	21	0	0	/ 0'	/ 0	0	J 15	61	7,7	19,5	-1,3	20,8	15,1	-0,1	9,5	18,8
6	0	0	6	0	9	1	6	/ 4	22	. 0	0	/ 2	. 0	/ P	J 14	62	7,8	19,7	-1,3	21	15,3	-0,1	9,7	19
7	0	0	1	0	/ 0	0	0	2	. 32	. 0	0	6	/ 9	/ P	J 14	64	7,8	20,2	-1	21,2	15,8	0,2	10,3	19,5
8	0	0	17	1	3	1	18	/ 3	7	0	0	/ 0'	/ 0'	/ P	J 10	37	7,6	18,1	-2,2	20,3	13,6	/ -1,2	8,3	17,4
9	0	0	12	. 1	12	0	15	/ 0	10	0	0	/ 0'	/ 0'	/ P	J 12	59	7,8	17,7	-3,2	20,8	13,3	-2,1	7,6	17
10	0	1	14	0	2	0	30	/ 0	3	0	0	/ 0'	/ 0	0	J 0 L	17	7,8	17,7	-3,2	20,9	13,3	-2,1	7,6	17
11	0	0	0	0	0	0	0	2	. 36	0	0	/ 6	4	/ 2	2 14	56	8,2	19,4	-2,8	22,2	14,8	-1,5	9,2	18,7
12	0	0	1	0	0	0	4	0	26	1	1	· 9	/ 8	0	J 12	48	8,3	19,8	-2,8	22,6	15,2	-1,5	9,6	19
13	0	0	8	1	4	0	10	3	24	0	0	/ 0'	/ 0'	/ P	J 14	51	8,1	18,8	-3,3	22	14,2	2	8,6	18
14	0	0	0	0	2	1	3	- 5	29	1	0	· 2'	7	0	J 5	22	8	18,1	-3,5	21,7	13,6	-2,3	8	17,4
15	0	0	11	1	. 1	0	27	0	9	1 0 ¹	/ 0'	1 1	· 0'	/ <u> </u>	J 0 (26	8,1	18,8	-3,3	22,1	14,2	2	8,6	18

	Correlations (KTT_EST_klima)													
	Marked of	correlatio	ns are s	ignificar	ntatp <	,05000	0							
	N=15 (Ca	asewise (deletion	of miss	ing data	I)								
	T>30°C	T>25°C	Tyear	Tsdev	Tmax	Tmin	Tcont	Tveg	Twin	Tspr	Tsum	Taut		
Variable														
(1, 1)	0,00	0,15	0,07	-0,25	-0,01	0,16	-0,22	0,01	0,16	0,03	0,00	0,05		
(2, 1)	-0,26	-0,12	-0,10	-0,25	-0,19	0,02	-0,25	-0,16	0,01	-0,16	-0,18	-0,10		
(2, 2)	-0,36	-0,30	-0,34	-0,56	-0,48	0,01	-0,61	-0,47	-0,05	-0,42	-0,50	-0,37		
(3, 2)	0,18	0,17	0,03	-0,42	-0,08	0,23	-0,39	-0,05	0,20	-0,06	-0,08	0,07		
(3, 3)	0,24	0,39	-0,05	-0,49	-0,22	0,20	-0,53	-0,17	0,16	-0,17	-0,21	-0,00		
(4, 1)	0,04	-0,00	0,30	-0,08	0,28	0,32	-0,10	0,27	0,33	0,31	0,28	0,25		
(4, 2)	-0,71	-0,66	-0,60	-0,04	-0,60	-0,46	-0,11	-0,61	-0,50	-0,61	-0,61	-0,58		
(4, 3)	0,21	0,15	0,31	-0,10	0,26	0,30	-0,07	0,27	0,32	0,32	0,28	0,26		
(4, 4)	0,58	0,48	0,50	0,40	0,61	0,20	0,47	0,59	0,26	0,56	0,62	0,50		
(5, 2)	-0,21	-0,36	-0,24	0,05	-0,18	-0,23	0,11	-0,20	-0,24	-0,20	-0,20	-0,27		
(5, 3)	0,12	0,00	0,07	0,49	0,24	-0,17	0,50	0,20	-0,14	0,17	0,22	0,05		
(5, 4)	0,30	0,27	0,39	0,54	0,53	0,05	0,58	0,51	0,10	0,48	0,54	0,38		
(5, 5)	0,17	0,13	0,30	0,38	0,40	0,05	0,43	0,40	0,09	0,39	0,41	0,29		
(6, 4)	0,23	0,15	0,01	0,38	0,12	-0,17	0,36	0,08	-0,14	0,06	0,13	0,02		

Correlation between climate parameters and genotype frequencies

Correlation of 6PGDH-A (43) genotype frequency with the number of summer days (above 25°C)

Negative correlation of AP-B (44) genotype frequency with autumn rainfall

Correlation of SKDH-A (33) genotype frequency with annual rainfall

Correlation between climate parameters and allele frequencies

allele	Tcont	Tsum	Tmin	Pyear	Ppos	Pacc	Pveg	Pmin	Pspr
ADH(3)									+0,67
ADH(4)			-0,66						
ADH(5)									-0,73
ADH(6)									-0,65
EST(2)		-0,60							
EST(4)		+0,57							
AP-B(4)				-0,62					
GDH(4)					-0,69				
PGI(6)									
PGM(2)				-0,69		-0,64			-0,67
PGM(4)						+0,53		+0,56	
SKDH(2)								+0,61	
SKDH(3)				-0,82	-0,74		-0,69	-0,75	
SKDH(4)				+0,53				+0,52	+0,58

ADH-A (5) allele frequency vs. spring rainfall

SKDH-A (3) allele frequency vs. annual rainfall

Correlation between climate parameters and calculated genetic parameters

Allele number	Tcont	Pyear	Ppos	Pacc	Pveg	Pmin	Pspr	Paut
AP-B		+0,62		+0,66		+0,65		
PGM		-0,69		-0,64			-0,67	
Effective allele number								
EST	-0,61							
SKDH		+0,80	+0,76	+0,66	+0,68	+0,73	+0,62	+0,81

Effective number of allele of EST-A and continentallity $(T_{max}-T_{min})$

Effective allele number of SKDH-A vs. annual rainfall

Correlation between climate parameters and calculated genetic parameters

H_{obs}	Tcont	T>25	Pyear	Pacc	Pveg	Pmin	Paut	Pwin
ADH	-0,73							
EST		-0,74						
AP-B			+0,56	+0,66		+0,73		+0,69
H_{exp} EST SKDH	-0,61		+0,86	+0,68	+0,75	+0,76	+0,80	+0,69
F is ADH AP-B EST PGM	+0,76	+0,71		-0,60		-0,69		-0,64

Observed heterozygosity of ADH-A and continentallity $(T_{max}-T_{min})$

Observed heterozygosity of AP-B and the rainfall of the driest month

Summary

- Results show a distinctive selective effect on allozyme gene loci
- The conception that heterozygots in general are showing more tolerance to stress is not supported by these results
 - only in a few cases, where heterozygots seem to support tolerance
- In the majority of cases a frequency increase of adaptively favourable alleles has been observed towards the xeric limit
 - leads to decrease of diversity

Summary

- Climate stress is a significant and effective selection agent
- The loss of genetic diversity decreases the adaptive potential of the population
- Possible consequences:
 - changes of sessile oak distribution as a result of unfavourable environments
 - loss of habitat

Conclusions

- Reconsidering of forest management rules
 - populations at margins resemble each other more than geographic adjacent ones
 - seed (planting) zones should be redrawn

Conclusions

- Reconsidering of forest management rules
 - populations at margins resemble each other more than geographic adjacent ones
 - seed (planting) zones should be redrawn
 - review of the present concept of reproductive material use
 - introduction foreign provenances of native species?
 - introduction exotic species?
- Special silviculture for exposed regions?
 - prefer plastic, adaptable populations
 - leave more room for natural selection: plant higher numbers, prefer seeding etc.
- Conservation strategy
 - marginal populations/sites less valuable?