

Modeling growth responses to climate change of interior Douglas-fir populations:

a novel analysis of provenance tests data

by Laura P. Leites and Gerald E. Rehfeldt

Involved in this project:

L. Leites, A. Robinson, G. Rehfeldt, J. Marshall, N. Crookston

Goals:

- To present a new approach to the analysis of provenance tests data,
- To discuss the resulting information in the context of climate change effects on the trailing-edge populations.

Outline

- Introduction
- Methods
- Results
- Discussion with bonus: Rehfeldt & Crookston's bioclimate model.

Introduction

Objectives:

 To assess the potential growth response of interior Douglas-fir populations to climate change with scarce available data.

Starting points:

Data: provenances tested in common gardens

Previous studies: Species-level response

Population-level response

Introduction

- Species-level response?
- Population-level response?
- Both

Rehfeldt et al.1999. Genetics responses to climate in *Pinus contorta*: niche breath, climate change, and reforestation. Ecological Monographs 69(3): 375-407.

Carter.1996. Provenance tests as indicators of growth response to climate change in 10 north temperate tree species. CJFR.26:1089-1095.

Methods - Data

 Wind-pollinated cones were collected from 228 seed sources (hereafter populations).

- Four geographic regions :
 - 1. North Idaho and Northeast Washington (region 1)
 - 2. Western Montana (region 2)
 - 3. Central Idaho (region 3)
 - 4. Montana and Idaho near the Continental Divide (region 4).
- Populations grouped by regions where tested in 4 studies, each in a different time period.
- 17 populations were planted in more than 1 study.

Methods - Data

- Each study comprised <u>3-4 test locations</u>.
- Each location comprised 1 to 8 planting sites.
- Planting sites had different treatments. Only those with no treatments were used in this analysis: 1 or 2 per location.
- Planting sites comprised 2-3 blocks.
- Populations were planted in row plots of 10-12 seedlings.

Methods - Data

- 3-year population height (HT) was recorded.
- Climatic normals for the period 1961-1990, 18 climate variables.
- Transfer distances (trds): difference between a given climate variable value at the test location and at the population's seed source location.
- 3 to 4 HT- trds pairs per population.

Methods - Analysis

The model - two interdependent areas of focus:

- 1. Building a model that would address our objective.
- 2. Applying a statistical tool that would provide the most information and accommodate the hierarchy of the data.

Methods - Analysis

Why a linear mixed-effects model?

- a. Quadratic response of growth on climate transfer distance.
- b. Draw information from all populations: broad range of transfer distances at the species-level.
- c. Keep population-level specificity.
- d. Select the effects of interest for predicting new data.
- e. Organize unexplained variation and define effects for which we will not know their values when predicting for new data.

Methods — Fixed effects selection:

1) Species-level response:

• 18 climate trds variables were evaluated with a simple linear model of quadratic form: $HT = b_0 + b_1^* trds + b_2^* trds^2 + e$

2) Adding population-level information

- 18 climate at seed source variables were evaluated.
- We used Spearman's correlation rank to select those with the highest linear correlation between HT and the climate variable.

Methods - Analysis

Fixed-effects:

- 1. One of the 4 trds variables.
- 2. One of the 3 climate at seed source variables only as a linear effect.
- 3. A trds*climate at seed source interaction term.

Random-effects:

Study x (Location/ site / block) x (Region / population)

Methods - Analysis

$$y_{j(i(k(lmq)))} = (b_0 + u_{1m} + u_{2j(q)} + u_{3i(k(l))} + u_{4k(l)} + u_{5l} + u_{6q}) + (b_1 + u_{7j})x_{1j(l)} + (b_2 + u_{8j})x_{1j(l)}^2 + b_3x_{2j} + b_4(x_{1j(l)} * x_{2j}) + \epsilon_{j(i(k(lmq)))}$$

- y = 3-yr height for the j^{th} population in the i^{th} block the k^{th} planting in the l^{th} test site in the m^{th} study and q^{th} geographic region;
- x_1 = climate transfer distance for the j^{th} population in the l^{th} test site;
- i = block index;
- j = population index;
- k = planting index;
- I = test site index;
- m = study index;
- q = geographic region index;
- b₀, b₁, and b₂ are parameters;
- u₁ and u₈ are random-effects

Results

HT = 172 + 2.65*MTCM. TRDS - 2.25*MTCM.TRDS^2 + 1.55*MAT.SeedSource - 1.38*MTCM. TRDS*MAT.SeedSource + ε

Discussion

Bonus: Rehfeldt & Crookston's bioclimate model for Douglas-fir.

- Objective: determination of Douglas-fir climate profile .
- Data:
 - 18 climate variables,
 - FIA plots: 18,000 plots with Douglas-fir, 100,000 plots without Douglas-fir
- Method: random forests multiple-regression tree.
- Prediction of occurrence of a species under current and future climate.
- Suitability of a site for a given species to be present.

Discussion – Climate 2030, Canadian GCM, A2 scenario

Species-level information

Population-level information

Discussion

ADI = annual dryness index = (sqrt(DegreeDays>5C))/MeanAnnual Precipitation

Final thoughts:

Strengths of the analytical approach:

- Use of historic data:
 - generation of a broad range of transfer distances while accounting for the within-group correlations.
 - species- and population-level response.
- Model readily applicable to populations within the geographic area.

Aspects that need improvement:

- Large proportion of total variation accounted for by random effects.
- Incorporation of a site productivity measure as a fixed-effect.
- Use of climate data specific for the test years.

Final thoughts:

Biological implications for interior Douglas-fir:

If climate change scenario and predictions hold.

- Decrease in growth for most populations, mainly those at the xeric-edge.
- Suitability of current xeric-edge environments for DF presence will decrease driven mostly by an increase in dryness.

Legend D30capct

Thanks!

Questions?

Additional slides

Model fit: diagnostic plots

Model summary:

Parameter	Parameter estimate	Confidence intervals (α = 0.95)	
		lower	upper
b0 (intercept)	172.70	78.05	267.34
b1 (MTCM)	1.545	-5.84	8.93
b2 (MTCM ²)	-2.253	-2.92	-1.59
b3 (MAT)	2.646	-2.67	7.96
b4 (MTCM*MAT)	-1.379	-2.49	-0.27
SD (u1, study)	55.17		
SD (u2, population)	19.47		
SD (u3, block)	9.97		
SD(u4, planting)	18.03		
SD(u5, test location)	63.42		
SD(u6, region)	38.59		
SD(u7, population linear)	5.49		
SD(u8, population	0.56		
quadratic)			
SD (€)	23.94		
Cor(u2, u7)	0.95		
Cor(u2, u8)	-0.14		
Cor(u7, u8)	-0.44		